TBufferFile
The concrete implementation of TBuffer for writing/reading to/from a ROOT file or socket.
class TBufferFile : public TBuffer
class
protected:
typedef std::vector<TStreamerInfo*> InfoList_t;
Int_t fMapCount; ///< Number of objects or classes in map
Int_t fMapSize; ///< Default size of map
Int_t fDisplacement; ///< Value to be added to the map offsets
UShort_t fPidOffset; ///< Offset to be added to the pid index in this key/buffer.
TExMap *fMap; ///< Map containing object,offset pairs for reading/writing
TExMap *fClassMap; ///< Map containing object,class pairs for reading
TStreamerInfo *fInfo; ///< Pointer to TStreamerInfo object writing/reading the buffer
InfoList_t fInfoStack; ///< Stack of pointers to the TStreamerInfos
static Int_t fgMapSize; ///< Default map size for all TBuffer objects
// Default ctor
TBufferFile() : TBuffer(), fMapCount(0), fMapSize(0),
fDisplacement(0),fPidOffset(0), fMap(0), fClassMap(0),
fInfo(0), fInfoStack() {}
// TBuffer objects cannot be copied or assigned
TBufferFile(const TBufferFile &); ///< not implemented
void operator=(const TBufferFile &); ///< not implemented
Int_t CheckByteCount(UInt_t startpos, UInt_t bcnt, const TClass *clss, const char* classname);
/// Check byte count with current buffer position. They should
/// match. If not print warning and position buffer in correct
/// place determined by the byte count. Startpos is position of
/// first byte where the byte count is written in buffer.
/// Returns 0 if everything is ok, otherwise the bytecount offset
/// (< 0 when read too little, >0 when read too much).
void CheckCount(UInt_t offset);
/// Check if offset is not too large (< kMaxMapCount) when writing.
UInt_t CheckObject(UInt_t offset, const TClass *cl, Bool_t readClass = kFALSE);
/// Check for object in the read map. If the object is 0 it still has to be
/// read. Try to read it from the buffer starting at location offset. If the
/// object is -1 then it really does not exist and we return 0. If the object
/// exists just return the offset.
virtual void WriteObjectClass(const void *actualObjStart, const TClass *actualClass, Bool_t cacheReuse);
/// Write object to I/O buffer.
/// This function assumes that the value of 'actualObjectStart' is the actual start of
/// the object of class 'actualClass'
/// If 'cacheReuse' is true (default) upon seeing an object address a second time,
/// we record the offset where its was written the first time rather than streaming
/// the object a second time.
/// If 'cacheReuse' is false, we always stream the object. This allows the (re)use
/// of temporary object to store different data in the same buffer.
public:
enum { kMapSize = 503 };
enum { kStreamedMemberWise = BIT(14) }; //added to version number to know if a collection has been stored member-wise
enum EStatusBits {
kNotDecompressed = BIT(15), //indicates a weird buffer, used by TBasket
kTextBasedStreaming = BIT(18), //indicates if buffer used for XML/SQL object streaming
kUser1 = BIT(21), //free for user
kUser2 = BIT(22), //free for user
kUser3 = BIT(23) //free for user
};
TBufferFile(TBuffer::EMode mode);
/// Create an I/O buffer object. Mode should be either TBuffer::kRead or
/// TBuffer::kWrite. By default the I/O buffer has a size of
/// TBuffer::kInitialSize (1024) bytes.
TBufferFile(TBuffer::EMode mode, Int_t bufsiz);
/// Create an I/O buffer object. Mode should be either TBuffer::kRead or
/// TBuffer::kWrite.
TBufferFile(TBuffer::EMode mode, Int_t bufsiz, void *buf, Bool_t adopt = kTRUE, ReAllocCharFun_t reallocfunc = 0);
/// Create an I/O buffer object.
/// Mode should be either TBuffer::kRead or
/// TBuffer::kWrite. By default the I/O buffer has a size of
/// TBuffer::kInitialSize (1024) bytes. An external buffer can be passed
/// to TBuffer via the buf argument. By default this buffer will be adopted
/// unless adopt is false.
/// If the new buffer is <b>not</b> adopted and no memory allocation routine
/// is provided, a Fatal error will be issued if the Buffer attempts to
/// expand.
virtual ~TBufferFile();
Int_t GetMapCount() const { return fMapCount; }
void GetMappedObject(UInt_t tag, void* &ptr, TClass* &ClassPtr) const;
/// Retrieve the object stored in the buffer's object map at 'tag'
/// Set ptr and ClassPtr respectively to the address of the object and
/// a pointer to its TClass.
void MapObject(const TObject *obj, UInt_t offset = 1);
/// Add object to the fMap container.
/// If obj is not 0 add object to the map (in read mode also add 0 objects to
/// the map). This method may only be called outside this class just before
/// calling obj->Streamer() to prevent self reference of obj, in case obj
/// contains (via via) a pointer to itself. In that case offset must be 1
/// (default value for offset).
void MapObject(const void *obj, const TClass *cl, UInt_t offset = 1);
/// Add object to the fMap container.
/// If obj is not 0 add object to the map (in read mode also add 0 objects to
/// the map). This method may only be called outside this class just before
/// calling obj->Streamer() to prevent self reference of obj, in case obj
/// contains (via via) a pointer to itself. In that case offset must be 1
/// (default value for offset).
void Reset() { SetBufferOffset(); ResetMap(); }
void InitMap();
/// Create the fMap container and initialize them
/// with the null object.
void ResetMap();
/// Delete existing fMap and reset map counter.
void SetReadParam(Int_t mapsize);
/// Set the initial size of the map used to store object and class
/// references during reading. The default size is TBufferFile::kMapSize.
/// Increasing the default has the benefit that when reading many
/// small objects the map does not need to be resized too often
/// (the system is always dynamic, even with the default everything
/// will work, only the initial resizing will cost some time).
/// This method can only be called directly after the creation of
/// the TBuffer, before any reading is done. Globally this option
/// can be changed using SetGlobalReadParam().
void SetWriteParam(Int_t mapsize);
/// Set the initial size of the hashtable used to store object and class
/// references during writing. The default size is TBufferFile::kMapSize.
/// Increasing the default has the benefit that when writing many
/// small objects the hashtable does not get too many collisions
/// (the system is always dynamic, even with the default everything
/// will work, only a large number of collisions will cost performance).
/// For optimal performance hashsize should always be a prime.
/// This method can only be called directly after the creation of
/// the TBuffer, before any writing is done. Globally this option
/// can be changed using SetGlobalWriteParam().
Bool_t CheckObject(const TObject *obj);
/// Check if the specified object is already in the buffer.
/// Returns kTRUE if object already in the buffer, kFALSE otherwise
/// (also if obj is 0 or TBuffer not in writing mode).
Bool_t CheckObject(const void *obj, const TClass *ptrClass);
/// Check if the specified object of the specified class is already in
/// the buffer. Returns kTRUE if object already in the buffer,
/// kFALSE otherwise (also if obj is 0 ).
virtual Int_t GetVersionOwner() const;
/// Return the version number of the owner file.
virtual Int_t CheckByteCount(UInt_t startpos, UInt_t bcnt, const TClass *clss);
/// Check byte count with current buffer position. They should
/// match. If not print warning and position buffer in correct
/// place determined by the byte count. Startpos is position of
/// first byte where the byte count is written in buffer.
/// Returns 0 if everything is ok, otherwise the bytecount offset
/// (< 0 when read too little, >0 when read too much).
virtual Int_t CheckByteCount(UInt_t startpos, UInt_t bcnt, const char *classname);
/// Check byte count with current buffer position. They should
/// match. If not print warning and position buffer in correct
/// place determined by the byte count. Startpos is position of
/// first byte where the byte count is written in buffer.
/// Returns 0 if everything is ok, otherwise the bytecount offset
/// (< 0 when read too little, >0 when read too much).
virtual void SetByteCount(UInt_t cntpos, Bool_t packInVersion = kFALSE);
/// Set byte count at position cntpos in the buffer. Generate warning if
/// count larger than kMaxMapCount. The count is excluded its own size.
virtual void SkipVersion(const TClass *cl = 0);
/// Skip class version from I/O buffer.
virtual Version_t ReadVersion(UInt_t *start = 0, UInt_t *bcnt = 0, const TClass *cl = 0);
/// Read class version from I/O buffer.
virtual Version_t ReadVersionNoCheckSum(UInt_t *start = 0, UInt_t *bcnt = 0);
/// Read class version from I/O buffer, when the caller knows for sure that
/// there is no checksum written/involved.
virtual Version_t ReadVersionForMemberWise(const TClass *cl = 0);
/// Read class version from I/O buffer
/// To be used when streaming out member-wise streamed collection where we do not
/// care (not save) about the byte count and can safely ignore missing streamerInfo
/// (since they usually indicate empty collections).
virtual UInt_t WriteVersion(const TClass *cl, Bool_t useBcnt = kFALSE);
/// Write class version to I/O buffer.
virtual UInt_t WriteVersionMemberWise(const TClass *cl, Bool_t useBcnt = kFALSE);
/// Write class version to I/O buffer after setting the kStreamedMemberWise
/// bit in the version number.
virtual void *ReadObjectAny(const TClass* cast);
/// Read object from I/O buffer.
/// A typical use for this function is:
/// MyClass *ptr = (MyClass*)b.ReadObjectAny(MyClass::Class());
/// I.e. clCast should point to a TClass object describing the class pointed
/// to by your pointer.
/// In case of multiple inheritance, the return value might not be the
/// real beginning of the object in memory. You will need to use a
/// dynamic_cast later if you need to retrieve it.
virtual void SkipObjectAny();
/// Skip any kind of object from buffer
virtual void TagStreamerInfo(TVirtualStreamerInfo* info);
/// Mark the classindex of the current file as using this TStreamerInfo
virtual void IncrementLevel(TVirtualStreamerInfo* info);
/// Increment level.
virtual void SetStreamerElementNumber(TStreamerElement*,Int_t) {}
virtual void DecrementLevel(TVirtualStreamerInfo*);
/// Decrement level.
TVirtualStreamerInfo *GetInfo() {return (TVirtualStreamerInfo*)fInfo;}
virtual void ClassBegin(const TClass*, Version_t = -1) {}
virtual void ClassEnd(const TClass*) {}
virtual void ClassMember(const char*, const char* = 0, Int_t = -1, Int_t = -1) {}
virtual Int_t ReadBuf(void *buf, Int_t max);
/// Read max bytes from the I/O buffer into buf. The function returns
/// the actual number of bytes read.
virtual void WriteBuf(const void *buf, Int_t max);
/// Write max bytes from buf into the I/O buffer.
virtual char *ReadString(char *s, Int_t max);
/// Read string from I/O buffer. String is read till 0 character is
/// found or till max-1 characters are read (i.e. string s has max
/// bytes allocated). If max = -1 no check on number of character is
/// made, reading continues till 0 character is found.
virtual void WriteString(const char *s);
/// Write string to I/O buffer. Writes string upto and including the
/// terminating 0.
virtual TClass *ReadClass(const TClass *cl = 0, UInt_t *objTag = 0);
/// Read class definition from I/O buffer.
/// \param[in] clReq Can be used to cross check if the actually read object is of the requested class.
/// \param[in] objTag Set in case the object is a reference to an already read object.
virtual void WriteClass(const TClass *cl);
/// Write class description to I/O buffer.
virtual TObject *ReadObject(const TClass *cl);
/// Read object from I/O buffer. clReq is NOT used.
/// The value returned is the address of the actual start in memory of
/// the object. Note that if the actual class of the object does not
/// inherit first from TObject, the type of the pointer is NOT 'TObject*'.
/// [More accurately, the class needs to start with the TObject part, for
/// the pointer to be a real TObject*].
/// We recommend using ReadObjectAny instead of ReadObject
virtual void WriteObject(const TObject *obj, Bool_t cacheReuse = kTRUE);
/// Write object to I/O buffer.
using TBuffer::WriteObject;
virtual Int_t WriteObjectAny(const void *obj, const TClass *ptrClass, Bool_t cacheReuse = kTRUE);
/// Write object to I/O buffer.
/// This function assumes that the value in 'obj' is the value stored in
/// a pointer to a "ptrClass". The actual type of the object pointed to
/// can be any class derived from "ptrClass".
/// Return:
/// - 0: failure
/// - 1: success
/// - 2: truncated success (i.e actual class is missing. Only ptrClass saved.)
/// If 'cacheReuse' is true (default) upon seeing an object address a second time,
/// we record the offset where its was written the first time rather than streaming
/// the object a second time.
/// If 'cacheReuse' is false, we always stream the object. This allows the (re)use
/// of temporary object to store different data in the same buffer.
UShort_t GetPidOffset() const {
// See comment in TBuffer::SetPidOffset
return fPidOffset;
}
void SetPidOffset(UShort_t offset);
/// This offset is used when a key (or basket) is transfered from one
/// file to the other. In this case the TRef and TObject might have stored a
/// pid index (to retrieve TProcessIDs) which referred to their order on the original
/// file, the fPidOffset is to be added to those values to correctly find the
/// TProcessID. This fPidOffset needs to be increment if the key/basket is copied
/// and need to be zero for new key/basket.
Int_t GetBufferDisplacement() const { return fDisplacement; }
void SetBufferDisplacement() { fDisplacement = 0; }
void SetBufferDisplacement(Int_t skipped)
{ fDisplacement = (Int_t)(Length() - skipped); }
// basic types and arrays of basic types
virtual void ReadFloat16 (Float_t *f, TStreamerElement *ele=0);
/// Read a Float16_t from the buffer,
/// see comments about Float16_t encoding at TBufferFile::WriteFloat16().
virtual void WriteFloat16(Float_t *f, TStreamerElement *ele=0);
/// Write a Float16_t to the buffer.
/// The following cases are supported for streaming a Float16_t type
/// depending on the range declaration in the comment field of the data member:
/// Case | Example |
/// -----|---------|
/// A | Float16_t fNormal; |
/// B | Float16_t fTemperature; //[0,100]|
/// C | Float16_t fCharge; //[-1,1,2]|
/// D | Float16_t fVertex[3]; //[-30,30,10]|
/// E | Float16_t fChi2; //[0,0,6]|
/// F | Int_t fNsp;<br>Float16_t* fPointValue; //[fNsp][0,3]|
/// - In case A fNormal is converted from a Float_t to a Float_t with mantissa truncated to 12 bits
/// - In case B fTemperature is converted to a 32 bit unsigned integer
/// - In case C fCharge is converted to a 2 bits unsigned integer
/// - In case D the array elements of fVertex are converted to an unsigned 10 bits integer
/// - In case E fChi2 is converted to a Float_t with truncated precision at 6 bits
/// - In case F the fNsp elements of array fPointvalue are converted to an unsigned 32 bit integer
/// Note that the range specifier must follow the dimension specifier.
/// Case B has more precision (9 to 10 significative digits than case A (6 to 7 digits).
/// The range specifier has the general format: [xmin,xmax] or [xmin,xmax,nbits]
/// - [0,1];
/// - [-10,100];
/// - [-pi,pi], [-pi/2,pi/4],[-2pi,2*pi]
/// - [-10,100,16]
/// - [0,0,8]
/// if nbits is not specified, or nbits <2 or nbits>16 it is set to 16. If
/// (xmin==0 and xmax==0 and nbits <=14) the float word will have
/// its mantissa truncated to nbits significative bits.
/// ## IMPORTANT NOTE
/// ### NOTE 1
/// Lets assume an original variable float x:
/// When using the format [0,0,8] (ie range not specified) you get the best
/// relative precision when storing and reading back the truncated x, say xt.
/// The variance of (x-xt)/x will be better than when specifying a range
/// for the same number of bits. However the precision relative to the
/// range (x-xt)/(xmax-xmin) will be worst, and vice-versa.
/// The format [0,0,8] is also interesting when the range of x is infinite
/// or unknown.
/// ### NOTE 2
/// It is important to understand the difference with the meaning of nbits
/// - in case of [-1,1,nbits], nbits is the total number of bits used to make
/// the conversion from a float to an integer
/// - in case of [0,0,nbits], nbits is the number of bits used for the mantissa
/// See example of use of the Float16_t data type in tutorial double32.C
/// \image html tbufferfile_double32.gif
virtual void ReadDouble32 (Double_t *d, TStreamerElement *ele=0);
/// Read a Double32_t from the buffer,
/// see comments about Double32_t encoding at TBufferFile::WriteDouble32().
virtual void WriteDouble32(Double_t *d, TStreamerElement *ele=0);
/// Write a Double32_t to the buffer.
/// The following cases are supported for streaming a Double32_t type
/// depending on the range declaration in the comment field of the data member:
/// Case | Example |
/// -----|---------|
/// A | Double32_t fNormal; |
/// B | Double32_t fTemperature; //[0,100]|
/// C | Double32_t fCharge; //[-1,1,2]|
/// D | Double32_t fVertex[3]; //[-30,30,10]|
/// E | Double32_t fChi2; //[0,0,6]|
/// F | Int_t fNsp;<br>Double32_t* fPointValue; //[fNsp][0,3]|
/// In case A fNormal is converted from a Double_t to a Float_t
/// In case B fTemperature is converted to a 32 bit unsigned integer
/// In case C fCharge is converted to a 2 bits unsigned integer
/// In case D the array elements of fVertex are converted to an unsigned 10 bits integer
/// In case E fChi2 is converted to a Float_t with mantissa truncated precision at 6 bits
/// In case F the fNsp elements of array fPointvalue are converted to an unsigned 32 bit integer
/// Note that the range specifier must follow the dimension specifier.
/// Case B has more precision (9 to 10 significative digits than case A (6 to 7 digits).
/// See TBufferFile::WriteFloat16 for more information.
/// see example of use of the Double32_t data type in tutorial double32.C
/// \image html tbufferfile_double32.gif
virtual void ReadWithFactor(Float_t *ptr, Double_t factor, Double_t minvalue);
/// Read a Float16_t from the buffer when the factor and minimum value have been specified
/// see comments about Double32_t encoding at TBufferFile::WriteDouble32().
virtual void ReadWithNbits(Float_t *ptr, Int_t nbits);
/// Read a Float16_t from the buffer when the number of bits is specified (explicitly or not)
/// see comments about Float16_t encoding at TBufferFile::WriteFloat16().
virtual void ReadWithFactor(Double_t *ptr, Double_t factor, Double_t minvalue);
/// Read a Double32_t from the buffer when the factor and minimum value have been specified
/// see comments about Double32_t encoding at TBufferFile::WriteDouble32().
virtual void ReadWithNbits(Double_t *ptr, Int_t nbits);
/// Read a Double32_t from the buffer when the number of bits is specified (explicitly or not)
/// see comments about Double32_t encoding at TBufferFile::WriteDouble32().
virtual Int_t ReadArray(Bool_t *&b);
virtual Int_t ReadArray(Char_t *&c);
virtual Int_t ReadArray(UChar_t *&c);
virtual Int_t ReadArray(Short_t *&h);
virtual Int_t ReadArray(UShort_t *&h);
virtual Int_t ReadArray(Int_t *&i);
virtual Int_t ReadArray(UInt_t *&i);
virtual Int_t ReadArray(Long_t *&l);
virtual Int_t ReadArray(ULong_t *&l);
virtual Int_t ReadArray(Long64_t *&l);
virtual Int_t ReadArray(ULong64_t *&l);
virtual Int_t ReadArray(Float_t *&f);
virtual Int_t ReadArray(Double_t *&d);
virtual Int_t ReadArrayFloat16(Float_t *&f, TStreamerElement *ele=0);
/// Read array of floats (written as truncated float) from the I/O buffer.
/// Returns the number of floats read.
/// If argument is a 0 pointer then space will be allocated for the array.
/// see comments about Float16_t encoding at TBufferFile::WriteFloat16
virtual Int_t ReadArrayDouble32(Double_t *&d, TStreamerElement *ele=0);
/// Read array of doubles (written as float) from the I/O buffer.
/// Returns the number of doubles read.
/// If argument is a 0 pointer then space will be allocated for the array.
/// see comments about Double32_t encoding at TBufferFile::WriteDouble32
virtual Int_t ReadStaticArray(Bool_t *b);
virtual Int_t ReadStaticArray(Char_t *c);
virtual Int_t ReadStaticArray(UChar_t *c);
virtual Int_t ReadStaticArray(Short_t *h);
virtual Int_t ReadStaticArray(UShort_t *h);
virtual Int_t ReadStaticArray(Int_t *i);
virtual Int_t ReadStaticArray(UInt_t *i);
virtual Int_t ReadStaticArray(Long_t *l);
virtual Int_t ReadStaticArray(ULong_t *l);
virtual Int_t ReadStaticArray(Long64_t *l);
virtual Int_t ReadStaticArray(ULong64_t *l);
virtual Int_t ReadStaticArray(Float_t *f);
virtual Int_t ReadStaticArray(Double_t *d);
virtual Int_t ReadStaticArrayFloat16(Float_t *f, TStreamerElement *ele=0);
/// Read array of floats (written as truncated float) from the I/O buffer.
/// Returns the number of floats read.
/// see comments about Float16_t encoding at TBufferFile::WriteFloat16
virtual Int_t ReadStaticArrayDouble32(Double_t *d, TStreamerElement *ele=0);
/// Read array of doubles (written as float) from the I/O buffer.
/// Returns the number of doubles read.
/// see comments about Double32_t encoding at TBufferFile::WriteDouble32
virtual void ReadFastArray(Bool_t *b, Int_t n);
virtual void ReadFastArray(Char_t *c, Int_t n);
virtual void ReadFastArrayString(Char_t *c, Int_t n);
virtual void ReadFastArray(UChar_t *c, Int_t n);
virtual void ReadFastArray(Short_t *h, Int_t n);
virtual void ReadFastArray(UShort_t *h, Int_t n);
virtual void ReadFastArray(Int_t *i, Int_t n);
virtual void ReadFastArray(UInt_t *i, Int_t n);
virtual void ReadFastArray(Long_t *l, Int_t n);
virtual void ReadFastArray(ULong_t *l, Int_t n);
virtual void ReadFastArray(Long64_t *l, Int_t n);
virtual void ReadFastArray(ULong64_t *l, Int_t n);
virtual void ReadFastArray(Float_t *f, Int_t n);
virtual void ReadFastArray(Double_t *d, Int_t n);
virtual void ReadFastArrayFloat16(Float_t *f, Int_t n, TStreamerElement *ele=0);
/// Read array of n floats (written as truncated float) from the I/O buffer.
/// see comments about Float16_t encoding at TBufferFile::WriteFloat16
virtual void ReadFastArrayDouble32(Double_t *d, Int_t n, TStreamerElement *ele=0);
/// Read array of n doubles (written as float) from the I/O buffer.
/// see comments about Double32_t encoding at TBufferFile::WriteDouble32
virtual void ReadFastArrayWithFactor(Float_t *ptr, Int_t n, Double_t factor, Double_t minvalue) ;
/// Read array of n floats (written as truncated float) from the I/O buffer.
/// see comments about Float16_t encoding at TBufferFile::WriteFloat16
virtual void ReadFastArrayWithNbits(Float_t *ptr, Int_t n, Int_t nbits);
/// Read array of n floats (written as truncated float) from the I/O buffer.
/// see comments about Float16_t encoding at TBufferFile::WriteFloat16
virtual void ReadFastArrayWithFactor(Double_t *ptr, Int_t n, Double_t factor, Double_t minvalue);
/// Read array of n doubles (written as float) from the I/O buffer.
/// see comments about Double32_t encoding at TBufferFile::WriteDouble32
virtual void ReadFastArrayWithNbits(Double_t *ptr, Int_t n, Int_t nbits) ;
/// Read array of n doubles (written as float) from the I/O buffer.
/// see comments about Double32_t encoding at TBufferFile::WriteDouble32
virtual void ReadFastArray(void *start , const TClass *cl, Int_t n=1, TMemberStreamer *s=0, const TClass* onFileClass=0 );
/// Read an array of 'n' objects from the I/O buffer.
/// Stores the objects read starting at the address 'start'.
/// The objects in the array are assume to be of class 'cl'.
virtual void ReadFastArray(void **startp, const TClass *cl, Int_t n=1, Bool_t isPreAlloc=kFALSE, TMemberStreamer *s=0, const TClass* onFileClass=0);
/// Read an array of 'n' objects from the I/O buffer.
/// The objects read are stored starting at the address '*start'
/// The objects in the array are assumed to be of class 'cl' or a derived class.
/// 'mode' indicates whether the data member is marked with '->'
virtual void WriteArray(const Bool_t *b, Int_t n);
virtual void WriteArray(const Char_t *c, Int_t n);
virtual void WriteArray(const UChar_t *c, Int_t n);
virtual void WriteArray(const Short_t *h, Int_t n);
virtual void WriteArray(const UShort_t *h, Int_t n);
virtual void WriteArray(const Int_t *i, Int_t n);
virtual void WriteArray(const UInt_t *i, Int_t n);
virtual void WriteArray(const Long_t *l, Int_t n);
virtual void WriteArray(const ULong_t *l, Int_t n);
virtual void WriteArray(const Long64_t *l, Int_t n);
virtual void WriteArray(const ULong64_t *l, Int_t n);
virtual void WriteArray(const Float_t *f, Int_t n);
virtual void WriteArray(const Double_t *d, Int_t n);
virtual void WriteArrayFloat16(const Float_t *f, Int_t n, TStreamerElement *ele=0);
/// Write array of n floats (as truncated float) into the I/O buffer.
/// see comments about Float16_t encoding at TBufferFile::WriteFloat16
virtual void WriteArrayDouble32(const Double_t *d, Int_t n, TStreamerElement *ele=0);
/// Write array of n doubles (as float) into the I/O buffer.
/// see comments about Double32_t encoding at TBufferFile::WriteDouble32
virtual void WriteFastArray(const Bool_t *b, Int_t n);
virtual void WriteFastArray(const Char_t *c, Int_t n);
virtual void WriteFastArrayString(const Char_t *c, Int_t n);/// Write array of n characters into the I/O buffer.
virtual void WriteFastArray(const UChar_t *c, Int_t n);
virtual void WriteFastArray(const Short_t *h, Int_t n);
virtual void WriteFastArray(const UShort_t *h, Int_t n);
virtual void WriteFastArray(const Int_t *i, Int_t n);
virtual void WriteFastArray(const UInt_t *i, Int_t n);
virtual void WriteFastArray(const Long_t *l, Int_t n);
virtual void WriteFastArray(const ULong_t *l, Int_t n);
virtual void WriteFastArray(const Long64_t *l, Int_t n);
virtual void WriteFastArray(const ULong64_t *l, Int_t n);
virtual void WriteFastArray(const Float_t *f, Int_t n);/// Write array of n floats into the I/O buffer.
virtual void WriteFastArray(const Double_t *d, Int_t n);/// Write array of n doubles into the I/O buffer.
virtual void WriteFastArrayFloat16(const Float_t *f, Int_t n, TStreamerElement *ele=0);
/// Write array of n floats (as truncated float) into the I/O buffer.
/// see comments about Float16_t encoding at TBufferFile::WriteFloat16
virtual void WriteFastArrayDouble32(const Double_t *d, Int_t n, TStreamerElement *ele=0);
/// Write array of n doubles (as float) into the I/O buffer.
/// see comments about Double32_t encoding at TBufferFile::WriteDouble32
virtual void WriteFastArray(void *start, const TClass *cl, Int_t n=1, TMemberStreamer *s=0);
/// Write an array of object starting at the address 'start' and of length 'n'
/// the objects in the array are assumed to be of class 'cl'
virtual Int_t WriteFastArray(void **startp, const TClass *cl, Int_t n=1, Bool_t isPreAlloc=kFALSE, TMemberStreamer *s=0);
/// Write an array of object starting at the address '*start' and of length 'n'
/// the objects in the array are of class 'cl'
/// 'isPreAlloc' indicates whether the data member is marked with '->'
/// Return:
/// - 0: success
/// - 2: truncated success (i.e actual class is missing. Only ptrClass saved.)
virtual void StreamObject(void *obj, const std::type_info &typeinfo, const TClass* onFileClass = 0 );
/// Stream an object given its C++ typeinfo information.
virtual void StreamObject(void *obj, const char *className, const TClass* onFileClass = 0 );
/// Stream an object given the name of its actual class.
virtual void StreamObject(void *obj, const TClass *cl, const TClass* onFileClass = 0 );
/// Stream an object given a pointer to its actual class.
virtual void StreamObject(TObject *obj);
/// Stream an object inheriting from TObject using its streamer.
virtual void ReadBool(Bool_t &b);
virtual void ReadChar(Char_t &c);
virtual void ReadUChar(UChar_t &c);
virtual void ReadShort(Short_t &s);
virtual void ReadUShort(UShort_t &s);
virtual void ReadInt(Int_t &i);
virtual void ReadUInt(UInt_t &i);
virtual void ReadLong(Long_t &l);
virtual void ReadULong(ULong_t &l);
virtual void ReadLong64(Long64_t &l);
virtual void ReadULong64(ULong64_t &l);
virtual void ReadFloat(Float_t &f);
virtual void ReadDouble(Double_t &d);
virtual void ReadCharP(Char_t *c);
virtual void ReadTString(TString &s);
virtual void ReadStdString(std::string *s);
using TBuffer::ReadStdString;
virtual void ReadCharStar(char* &s);
/// Read char* from TBuffer.
virtual void WriteBool(Bool_t b);
virtual void WriteChar(Char_t c);
virtual void WriteUChar(UChar_t c);
virtual void WriteShort(Short_t s);
virtual void WriteUShort(UShort_t s);
virtual void WriteInt(Int_t i);
virtual void WriteUInt(UInt_t i);
virtual void WriteLong(Long_t l);
virtual void WriteULong(ULong_t l);
virtual void WriteLong64(Long64_t l);
virtual void WriteULong64(ULong64_t l);
virtual void WriteFloat(Float_t f);
virtual void WriteDouble(Double_t d);
virtual void WriteCharP(const Char_t *c);
virtual void WriteTString(const TString &s);
using TBuffer::WriteStdString;
virtual void WriteStdString(const std::string *s);
virtual void WriteCharStar(char *s);
/// Write char* into TBuffer.
// Special basic ROOT objects and collections
virtual TProcessID *GetLastProcessID(TRefTable *reftable) const;
/// Return the last TProcessID in the file.
virtual UInt_t GetTRefExecId();
/// Return the exec id stored in the current TStreamerInfo element.
/// The execid has been saved in the unique id of the TStreamerElement
/// being read by TStreamerElement::Streamer.
/// The current element (fgElement) is set as a static global
/// by TStreamerInfo::ReadBuffer (Clones) when reading this TRef.
virtual TProcessID *ReadProcessID(UShort_t pidf);
/// The TProcessID with number pidf is read from file.
/// If the object is not already entered in the gROOT list, it is added.
virtual UShort_t WriteProcessID(TProcessID *pid);
/// Check if the ProcessID pid is already in the file.
/// If not, add it and return the index number in the local file list.
// Utilities for TStreamerInfo
virtual void ForceWriteInfo(TVirtualStreamerInfo *info, Bool_t force);
/// force writing the TStreamerInfo to the file
virtual void ForceWriteInfoClones(TClonesArray *a);
/// Make sure TStreamerInfo is not optimized, otherwise it will not be
/// possible to support schema evolution in read mode.
/// In case the StreamerInfo has already been computed and optimized,
/// one must disable the option BypassStreamer.
virtual Int_t ReadClones (TClonesArray *a, Int_t nobjects, Version_t objvers);
/// Interface to TStreamerInfo::ReadBufferClones.
virtual Int_t WriteClones(TClonesArray *a, Int_t nobjects);
/// Interface to TStreamerInfo::WriteBufferClones.
// Utilities for TClass
virtual Int_t ReadClassEmulated(const TClass *cl, void *object, const TClass *onfile_class);
/// Read emulated class.
virtual Int_t ReadClassBuffer(const TClass *cl, void *pointer, const TClass *onfile_class);
/// Deserialize information from a buffer into an object.
/// Note: This function is called by the xxx::Streamer()
/// functions in rootcint-generated dictionaries.
virtual Int_t ReadClassBuffer(const TClass *cl, void *pointer, Int_t version, UInt_t start, UInt_t count, const TClass *onfile_class);
/// Deserialize information from a buffer into an object.
/// Note: This function is called by the xxx::Streamer() functions in
/// rootcint-generated dictionaries.
/// This function assumes that the class version and the byte count
/// information have been read.
/// \param[in] version The version number of the class
/// \param[in] start The starting position in the buffer b
/// \param[in] count The number of bytes for this object in the buffer
virtual Int_t WriteClassBuffer(const TClass *cl, void *pointer);
/// Function called by the Streamer functions to serialize object at p
/// to buffer b. The optional argument info may be specified to give an
/// alternative StreamerInfo instead of using the default StreamerInfo
/// automatically built from the class definition.
/// For more information, see class TStreamerInfo.
// Utilites to streamer using sequences.
Int_t ApplySequence(const TStreamerInfoActions::TActionSequence &sequence, void *object);
/// Read one collection of objects from the buffer using the StreamerInfoLoopAction.
/// The collection needs to be a split TClonesArray or a split vector of pointers.
Int_t ApplySequenceVecPtr(const TStreamerInfoActions::TActionSequence &sequence, void *start_collection, void *end_collection);
/// Read one collection of objects from the buffer using the StreamerInfoLoopAction.
/// The collection needs to be a split TClonesArray or a split vector of pointers.
Int_t ApplySequence(const TStreamerInfoActions::TActionSequence &sequence, void *start_collection, void *end_collection);
/// Read one collection of objects from the buffer using the StreamerInfoLoopAction.
static void SetGlobalReadParam(Int_t mapsize);
/// Set the initial size of the map used to store object and class
/// references during reading.
/// The default size is kMapSize.
/// Increasing the default has the benefit that when reading many
/// small objects the array does not need to be resized too often
/// (the system is always dynamic, even with the default everything
/// will work, only the initial resizing will cost some time).
/// Per TBuffer object this option can be changed using SetReadParam().
static void SetGlobalWriteParam(Int_t mapsize);
/// Set the initial size of the map used to store object and class
/// references during reading.
/// The default size is kMapSize.
/// Increasing the default has the benefit that when reading many
/// small objects the array does not need to be resized too often
/// (the system is always dynamic, even with the default everything
/// will work, only the initial resizing will cost some time).
/// Per TBuffer object this option can be changed using SetReadParam().
static Int_t GetGlobalReadParam();
/// Get default read map size.
static Int_t GetGlobalWriteParam();
/// Get default write map size.