TF1
继承于 TNamed, TAttLine, TAttFill, TAttMarker
A TF1 object is a 1-Dim function defined between a lower and upper limit.
The function may be a simple function based on a TFormula expression or a precompiled user function.
The function may have associated parameters.
TF1 graphics function is via the TH1 and TGraph drawing functions.
The following types of functions can be created:
- Expression using variable x and no parameters
- Expression using variable x with parameters
- Lambda Expression with variable x and parameters
- A general C function with parameters
- A general C++ function object (functor) with parameters
- A member function with parameters of a general C++ class
class
public:
// TF1 status bits
enum {
kNotDraw = BIT(9) // don't draw the function when in a TH1
};
TF1();
TF1(const char *name, const char *formula, Double_t xmin=0, Double_t xmax = 1);
/// F1 constructor using a formula definition
/// See TFormula constructor for explanation of the formula syntax.
/// See tutorials: fillrandom, first, fit1, formula1, multifit
/// for real examples.
/// Creates a function of type A or B between xmin and xmax
/// if formula has the form "fffffff;xxxx;yyyy", it is assumed that
/// the formula string is "fffffff" and "xxxx" and "yyyy" are the
/// titles for the X and Y axis respectively.
TF1(const char *name, Double_t xmin, Double_t xmax, Int_t npar,Int_t ndim = 1);
/// F1 constructor using name of an interpreted function.
/// Creates a function of type C between xmin and xmax.
/// name is the name of an interpreted CINT cunction.
/// The function is defined with npar parameters
/// fcn must be a function of type:
/// Double_t fcn(Double_t *x, Double_t *params)
/// This constructor is called for functions of type C by CINT.
/// WARNING! A function created with this constructor cannot be Cloned.
#ifndef __CINT__
TF1(const char *name, Double_t (*fcn)(Double_t *, Double_t *), Double_t xmin=0, Double_t xmax=1, Int_t npar=0, Int_t ndim = 1); //fcn为自己定义的函数曲线,npar为调用的参数个数
/// Constructor using a pointer to a real function.
/// \param npar is the number of free parameters used by the function
/// This constructor creates a function of type C when invoked
/// with the normal C++ compiler.
/// see test program test/stress.cxx (function stress1) for an example.
/// note the interface with an intermediate pointer.
/// WARNING! A function created with this constructor cannot be Cloned.
TF1(const char *name, Double_t (*fcn)(const Double_t *, const Double_t *), Double_t xmin=0, Double_t xmax=1, Int_t npar=0,Int_t ndim = 1);
/// Constructor using a pointer to real function.
/// \param npar is the number of free parameters used by the function
/// This constructor creates a function of type C when invoked
/// with the normal C++ compiler.
/// see test program test/stress.cxx (function stress1) for an example.
/// note the interface with an intermediate pointer.
/// WARNING! A function created with this constructor cannot be Cloned.
#endif
// Constructors using functors (compiled mode only)
TF1(const char *name, ROOT::Math::ParamFunctor f, Double_t xmin = 0, Double_t xmax = 1, Int_t npar = 0,Int_t ndim = 1);
/// Constructor using the Functor class.
/// \param xmin and
/// \param xmax define the plotting range of the function
/// \param npar is the number of free parameters used by the function
/// This constructor can be used only in compiled code
/// WARNING! A function created with this constructor cannot be Cloned.
// Template constructors from any C++ callable object, defining the operator() (double * , double *)
// and returning a double.
// The class name is not needed when using compile code, while it is required when using
// interpreted code via the specialized constructor with void *.
// An instance of the C++ function class or its pointer can both be used. The former is reccomended when using
// C++ compiled code, but if CINT compatibility is needed, then a pointer to the function class must be used.
// xmin and xmax specify the plotting range, npar is the number of parameters.
// See the tutorial math/exampleFunctor.C for an example of using this constructor
template <typename Func>
TF1(const char *name, Func f, Double_t xmin, Double_t xmax, Int_t npar,Int_t ndim = 1 );
// backward compatible interface
template <typename Func>
TF1(const char *name, Func f, Double_t xmin, Double_t xmax, Int_t npar, const char * ) :
TNamed(name,name), TAttLine(), TAttFill(), TAttMarker(),
fXmin(xmin), fXmax(xmax),
fNpar(npar), fNdim(1),
fNpx(100), fType(1),
fNpfits(0), fNDF(0), fChisquare(0),
fMinimum(-1111), fMaximum(-1111),
fParErrors(std::vector<Double_t>(npar)),
fParMin(std::vector<Double_t>(npar)),
fParMax(std::vector<Double_t>(npar)),
fParent(0), fHistogram(0),
fMethodCall(0),
fNormalized(false), fNormIntegral(0),
fFunctor(ROOT::Math::ParamFunctor(f)),
fFormula(0),
fParams(new TF1Parameters(npar) )
{
DoInitialize();
}
// Template constructors from a pointer to any C++ class of type PtrObj with a specific member function of type
// MemFn.
// The member function must have the signature of (double * , double *) and returning a double.
// The class name and the method name are not needed when using compile code
// (the member function pointer is used in this case), while they are required when using interpreted
// code via the specialized constructor with void *.
// xmin and xmax specify the plotting range, npar is the number of parameters.
// See the tutorial math/exampleFunctor.C for an example of using this constructor
template <class PtrObj, typename MemFn>
TF1(const char *name, const PtrObj& p, MemFn memFn, Double_t xmin, Double_t xmax, Int_t npar,Int_t ndim = 1) :
TNamed(name,name), TAttLine(), TAttFill(), TAttMarker(),
fXmin(xmin), fXmax(xmax),
fNpar(npar), fNdim(ndim),
fNpx(100), fType(1),
fNpfits(0), fNDF(0), fChisquare(0),
fMinimum(-1111), fMaximum(-1111),
fParErrors(std::vector<Double_t>(npar)),
fParMin(std::vector<Double_t>(npar)),
fParMax(std::vector<Double_t>(npar)),
fParent(0), fHistogram(0),
fMethodCall(0),
fNormalized(false), fNormIntegral(0),
fFunctor ( ROOT::Math::ParamFunctor(p,memFn) ),
fFormula(0),
fParams(new TF1Parameters(npar) )
{
DoInitialize();
}
// backward compatible interface
template <class PtrObj, typename MemFn>
TF1(const char *name, const PtrObj& p, MemFn memFn, Double_t xmin, Double_t xmax, Int_t npar,const char * , const char * ) :
TNamed(name,name), TAttLine(), TAttFill(), TAttMarker(),
fXmin(xmin), fXmax(xmax),
fNpar(npar), fNdim(1),
fNpx(100), fType(1),
fNpfits(0), fNDF(0), fChisquare(0),
fMinimum(-1111), fMaximum(-1111),
fParErrors(std::vector<Double_t>(npar)),
fParMin(std::vector<Double_t>(npar)),
fParMax(std::vector<Double_t>(npar)),
fParent(0), fHistogram(0),
fMethodCall(0),
fNormalized(false), fNormIntegral(0),
fFunctor ( ROOT::Math::ParamFunctor(p,memFn) ),
fFormula(0),
fParams(new TF1Parameters(npar) )
{
DoInitialize();
}
TF1(const TF1 &f1);
TF1& operator=(const TF1 &rhs);
virtual ~TF1();
virtual void AddParameter(const TString &name, Double_t value) { if (fFormula) fFormula->AddParameter(name,value); }
// virtual void AddParameters(const pair<TString,Double_t> *pairs, Int_t size) { fFormula->AddParameters(pairs,size); }
// virtual void AddVariable(const TString &name, Double_t value = 0) { if (fFormula) fFormula->AddVariable(name,value); }
// virtual void AddVariables(const TString *vars, Int_t size) { if (fFormula) fFormula->AddVariables(vars,size); }
virtual Bool_t AddToGlobalList(Bool_t on = kTRUE);
/// Add to global list of functions (gROOT->GetListOfFunctions() )
/// return previous status (true of functions was already in the list false if not)
virtual void Browse(TBrowser *b);
virtual void Copy(TObject &f1) const;
/// Copy this F1 to a new F1.
/// Note that the cached integral with its related arrays are not copied
/// (they are also set as transient data members)
virtual Double_t Derivative (Double_t x, Double_t *params=0, Double_t epsilon=0.001) const;
/// Returns the first derivative of the function at point x,
/// computed by Richardson's extrapolation method (use 2 derivative estimates
/// to compute a third, more accurate estimation)
/// first, derivatives with steps h and h/2 are computed by central difference formulas
/// D(h) = \frac{f(x+h) - f(x-h)}{2h}
/// the final estimate
/// D = \frac{4D(h/2) - D(h)}{3}
/// "Numerical Methods for Scientists and Engineers", H.M.Antia, 2nd edition"
/// if the argument params is null, the current function parameters are used,
/// otherwise the parameters in params are used.
/// the argument eps may be specified to control the step size (precision).
/// the step size is taken as eps*(xmax-xmin).
/// the default value (0.001) should be good enough for the vast majority
/// of functions. Give a smaller value if your function has many changes
/// of the second derivative in the function range.
/// Getting the error via TF1::DerivativeError:
/// (total error = roundoff error + interpolation error)
/// the estimate of the roundoff error is taken as follows:
/// err = k\sqrt{f(x)^{2} + x^{2}deriv^{2}}\sqrt{\sum ai^{2}},
/// where k is the double precision, ai are coefficients used in
/// central difference formulas
/// interpolation error is decreased by making the step size h smaller.
/// Author: Anna Kreshuk
virtual Double_t Derivative2(Double_t x, Double_t *params=0, Double_t epsilon=0.001) const;
/// Returns the second derivative of the function at point x,
/// computed by Richardson's extrapolation method (use 2 derivative estimates
/// to compute a third, more accurate estimation)
/// first, derivatives with steps h and h/2 are computed by central difference formulas
/// D(h) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^{2}}
/// the final estimate
/// D = \frac{4D(h/2) - D(h)}{3}
/// "Numerical Methods for Scientists and Engineers", H.M.Antia, 2nd edition"
/// if the argument params is null, the current function parameters are used,
/// otherwise the parameters in params are used.
/// the argument eps may be specified to control the step size (precision).
/// the step size is taken as eps*(xmax-xmin).
/// the default value (0.001) should be good enough for the vast majority
/// of functions. Give a smaller value if your function has many changes
/// of the second derivative in the function range.
/// Getting the error via TF1::DerivativeError:
/// (total error = roundoff error + interpolation error)
/// the estimate of the roundoff error is taken as follows:
/// err = k\sqrt{f(x)^{2} + x^{2}deriv^{2}}\sqrt{\sum ai^{2}},
/// where k is the double precision, ai are coefficients used in
/// central difference formulas
/// interpolation error is decreased by making the step size h smaller.
/// Author: Anna Kreshuk
virtual Double_t Derivative3(Double_t x, Double_t *params=0, Double_t epsilon=0.001) const;
/// Returns the third derivative of the function at point x,
/// computed by Richardson's extrapolation method (use 2 derivative estimates
/// to compute a third, more accurate estimation)
/// first, derivatives with steps h and h/2 are computed by central difference formulas
/// D(h) = \frac{f(x+2h) - 2f(x+h) + 2f(x-h) - f(x-2h)}{2h^{3}}
/// the final estimate
/// D = \frac{4D(h/2) - D(h)}{3}
/// "Numerical Methods for Scientists and Engineers", H.M.Antia, 2nd edition"
/// if the argument params is null, the current function parameters are used,
/// otherwise the parameters in params are used.
/// the argument eps may be specified to control the step size (precision).
/// the step size is taken as eps*(xmax-xmin).
/// the default value (0.001) should be good enough for the vast majority
/// of functions. Give a smaller value if your function has many changes
/// of the second derivative in the function range.
/// Getting the error via TF1::DerivativeError:
/// (total error = roundoff error + interpolation error)
/// the estimate of the roundoff error is taken as follows:
/// err = k#sqrt{f(x)^{2} + x^{2}deriv^{2}}#sqrt{#sum ai^{2}},
/// where k is the double precision, ai are coefficients used in
/// central difference formulas
/// interpolation error is decreased by making the step size h smaller.
/// Author: Anna Kreshuk
static Double_t DerivativeError();
/// Static function returning the error of the last call to the of Derivative's functions
virtual Int_t DistancetoPrimitive(Int_t px, Int_t py);
/// Compute distance from point px,py to a function.
/// Compute the closest distance of approach from point px,py to this
/// function. The distance is computed in pixels units.
/// Note that px is called with a negative value when the TF1 is in
/// TGraph or TH1 list of functions. In this case there is no point
/// looking at the histogram axis.
virtual void Draw(Option_t *option="");
/// Draw this function with its current attributes.
/// Possible option values are:
/// option | description
/// -------|----------------------------------------
/// "SAME" | superimpose on top of existing picture
/// "L" | connect all computed points with a straight line
/// "C" | connect all computed points with a smooth curve
/// "FC" | draw a fill area below a smooth curve
/// Note that the default value is "L". Therefore to draw on top
/// of an existing picture, specify option "LSAME"
/// NB. You must use DrawCopy if you want to draw several times the same
/// function in the current canvas.
virtual TF1 *DrawCopy(Option_t *option="") const;
/// Draw a copy of this function with its current attributes.
/// This function MUST be used instead of Draw when you want to draw
/// the same function with different parameters settings in the same canvas.
/// Possible option values are:
/// option | description
/// -------|----------------------------------------
/// "SAME" | superimpose on top of existing picture
/// "L" | connect all computed points with a straight line
/// "C" | connect all computed points with a smooth curve
/// "FC" | draw a fill area below a smooth curve
/// Note that the default value is "L". Therefore to draw on top
/// of an existing picture, specify option "LSAME"
virtual TObject *DrawDerivative(Option_t *option="al"); // *MENU*
/// Draw derivative of this function
/// An intermediate TGraph object is built and drawn with option.
/// The function returns a pointer to the TGraph object. Do:
/// TGraph *g = (TGraph*)myfunc.DrawDerivative(option);
/// The resulting graph will be drawn into the current pad.
/// If this function is used via the context menu, it recommended
/// to create a new canvas/pad before invoking this function.
virtual TObject *DrawIntegral(Option_t *option="al"); // *MENU*
/// Draw integral of this function
/// An intermediate TGraph object is built and drawn with option.
/// The function returns a pointer to the TGraph object. Do:
/// TGraph *g = (TGraph*)myfunc.DrawIntegral(option);
/// The resulting graph will be drawn into the current pad.
/// If this function is used via the context menu, it recommended
/// to create a new canvas/pad before invoking this function.
virtual void DrawF1(Double_t xmin, Double_t xmax, Option_t *option="");/// Draw function between xmin and xmax.
virtual Double_t Eval(Double_t x, Double_t y=0, Double_t z=0, Double_t t=0) const; //通过变量x获得其函数返回值
/// Evaluate this function.
/// Computes the value of this function (general case for a 3-d function)
/// at point x,y,z.
/// For a 1-d function give y=0 and z=0
/// The current value of variables x,y,z is passed through x, y and z.
/// The parameters used will be the ones in the array params if params is given
/// otherwise parameters will be taken from the stored data members fParams
virtual Double_t EvalPar(const Double_t *x, const Double_t *params=0);
/// Evaluate function with given coordinates and parameters.
/// Compute the value of this function at point defined by array x
/// and current values of parameters in array params.
/// If argument params is omitted or equal 0, the internal values
/// of parameters (array fParams) will be used instead.
/// For a 1-D function only x[0] must be given.
/// In case of a multi-dimemsional function, the arrays x must be
/// filled with the corresponding number of dimensions.
/// WARNING. In case of an interpreted function (fType=2), it is the
/// user's responsability to initialize the parameters via InitArgs
/// before calling this function.
/// InitArgs should be called at least once to specify the addresses
/// of the arguments x and params.
/// InitArgs should be called everytime these addresses change.
virtual Double_t operator()(Double_t x, Double_t y=0, Double_t z = 0, Double_t t = 0) const;
virtual Double_t operator()(const Double_t *x, const Double_t *params=0);
virtual void ExecuteEvent(Int_t event, Int_t px, Int_t py);
/// Execute action corresponding to one event.
/// This member function is called when a F1 is clicked with the locator
virtual void FixParameter(Int_t ipar, Double_t value); /// Fix the value of a parameter. The specified value will be used in a fit operation
Double_t GetChisquare() const {return fChisquare;}
virtual TH1 *GetHistogram() const; //将其转为TH1类型
/// Return a pointer to the histogram used to vusualize the function
virtual TH1 *CreateHistogram() { return DoCreateHistogram(fXmin, fXmax); }
virtual TFormula *GetFormula() { return fFormula;}
virtual const TFormula *GetFormula() const { return fFormula;}
virtual TString GetExpFormula(Option_t *option="") const { return (fFormula) ? fFormula->GetExpFormula(option) : ""; }
virtual const TObject *GetLinearPart(Int_t i) const { return (fFormula) ? fFormula->GetLinearPart(i) : nullptr;}
virtual Double_t GetMaximum(Double_t xmin=0, Double_t xmax=0, Double_t epsilon = 1.E-10, Int_t maxiter = 100, Bool_t logx = false) const; /// Returns the maximum value of the function
/// First, the grid search is used to bracket the maximum
/// with the step size = (xmax-xmin)/fNpx.
/// This way, the step size can be controlled via the SetNpx() function.
/// If the function is unimodal or if its extrema are far apart, setting
/// the fNpx to a small value speeds the algorithm up many times.
/// Then, Brent's method is applied on the bracketed interval
/// epsilon (default = 1.E-10) controls the relative accuracy (if |x| > 1 )
/// and absolute (if |x| < 1) and maxiter (default = 100) controls the maximum number
/// of iteration of the Brent algorithm
/// If the flag logx is set the grid search is done in log step size
/// This is done automatically if the log scale is set in the current Pad
/// NOTE: see also TF1::GetMaximumX and TF1::GetX
virtual Double_t GetMinimum(Double_t xmin=0, Double_t xmax=0, Double_t epsilon = 1.E-10, Int_t maxiter = 100, Bool_t logx = false) const; /// Returns the minimum value of the function on the (xmin, xmax) interval
/// First, the grid search is used to bracket the maximum
/// with the step size = (xmax-xmin)/fNpx. This way, the step size
/// can be controlled via the SetNpx() function. If the function is
/// unimodal or if its extrema are far apart, setting the fNpx to
/// a small value speeds the algorithm up many times.
/// Then, Brent's method is applied on the bracketed interval
/// epsilon (default = 1.E-10) controls the relative accuracy (if |x| > 1 )
/// and absolute (if |x| < 1) and maxiter (default = 100) controls the maximum number
/// of iteration of the Brent algorithm
/// If the flag logx is set the grid search is done in log step size
/// This is done automatically if the log scale is set in the current Pad
/// NOTE: see also TF1::GetMaximumX and TF1::GetX
virtual Double_t GetMaximumX(Double_t xmin=0, Double_t xmax=0, Double_t epsilon = 1.E-10, Int_t maxiter = 100, Bool_t logx = false) const; /// Returns the X value corresponding to the maximum value of the function
/// Returns the X value corresponding to the maximum value of the function
/// Method:
/// First, the grid search is used to bracket the maximum
/// with the step size = (xmax-xmin)/fNpx.
/// This way, the step size can be controlled via the SetNpx() function.
/// If the function is unimodal or if its extrema are far apart, setting
/// the fNpx to a small value speeds the algorithm up many times.
/// Then, Brent's method is applied on the bracketed interval
/// epsilon (default = 1.E-10) controls the relative accuracy (if |x| > 1 )
/// and absolute (if |x| < 1) and maxiter (default = 100) controls the maximum number
/// of iteration of the Brent algorithm
/// If the flag logx is set the grid search is done in log step size
/// This is done automatically if the log scale is set in the current Pad
/// NOTE: see also TF1::GetX
virtual Double_t GetMinimumX(Double_t xmin=0, Double_t xmax=0, Double_t epsilon = 1.E-10, Int_t maxiter = 100, Bool_t logx = false) const; /// Returns the X value corresponding to the minimum value of the function
/// Returns the X value corresponding to the minimum value of the function
/// on the (xmin, xmax) interval
/// Method:
/// First, the grid search is used to bracket the maximum
/// with the step size = (xmax-xmin)/fNpx. This way, the step size
/// can be controlled via the SetNpx() function. If the function is
/// unimodal or if its extrema are far apart, setting the fNpx to
/// a small value speeds the algorithm up many times.
/// Then, Brent's method is applied on the bracketed interval
/// epsilon (default = 1.E-10) controls the relative accuracy (if |x| > 1 )
/// and absolute (if |x| < 1) and maxiter (default = 100) controls the maximum number
/// of iteration of the Brent algorithm
/// If the flag logx is set the grid search is done in log step size
/// This is done automatically if the log scale is set in the current Pad
/// NOTE: see also TF1::GetX
virtual Double_t GetMaximumStored() const {return fMaximum;}
virtual Double_t GetMinimumStored() const {return fMinimum;}
virtual Int_t GetNpar() const { return fNpar;}
virtual Int_t GetNdim() const { return fNdim;}
virtual Int_t GetNDF() const;
/// Return the number of degrees of freedom in the fit
/// the fNDF parameter has been previously computed during a fit.
/// The number of degrees of freedom corresponds to the number of points
/// used in the fit minus the number of free parameters.
virtual Int_t GetNpx() const {return fNpx;} //获得区间分成份数
/// Return the number of degrees of freedom in the fit
/// the fNDF parameter has been previously computed during a fit.
/// The number of degrees of freedom corresponds to the number of points
/// used in the fit minus the number of free parameters.
TMethodCall *GetMethodCall() const {return fMethodCall;}
virtual Int_t GetNumber() const { return (fFormula) ? fFormula->GetNumber() : 0;}
virtual Int_t GetNumberFreeParameters() const;/// Return the number of free parameters
virtual Int_t GetNumberFitPoints() const {return fNpfits;}
virtual char *GetObjectInfo(Int_t px, Int_t py) const;
/// Redefines TObject::GetObjectInfo.
/// Displays the function info (x, function value)
/// corresponding to cursor position px,py
TObject *GetParent() const {return fParent;}
virtual Double_t GetParameter(Int_t ipar) const {
return (fFormula) ? fFormula->GetParameter(ipar) : fParams->GetParameter(ipar);
}
virtual Double_t GetParameter(const TString &name) const {
return (fFormula) ? fFormula->GetParameter(name) : fParams->GetParameter(name);
}
virtual Double_t *GetParameters() const {
return (fFormula) ? fFormula->GetParameters() : const_cast<Double_t*>(fParams->GetParameters());
}
virtual void GetParameters(Double_t *params) { if (fFormula) fFormula->GetParameters(params);
else std::copy(fParams->ParamsVec().begin(), fParams->ParamsVec().end(), params); }
virtual const char *GetParName(Int_t ipar) const {
return (fFormula) ? fFormula->GetParName(ipar) : fParams->GetParName(ipar);
}
virtual Int_t GetParNumber(const char* name) const {
return (fFormula) ? fFormula->GetParNumber(name) : fParams->GetParNumber(name);
}
/// Returns the parameter number given a name
/// not very efficient but list of parameters is typically small
/// could use a map if needed
virtual Double_t GetParError(Int_t ipar) const;/// Return value of parameter number ipar
virtual const Double_t *GetParErrors() const {return fParErrors.data();}
virtual void GetParLimits(Int_t ipar, Double_t &parmin, Double_t &parmax) const;/// Return limits for parameter ipar.
virtual Double_t GetProb() const;/// Return the fit probability
virtual Int_t GetQuantiles(Int_t nprobSum, Double_t *q, const Double_t *probSum);
/// Compute Quantiles for density distribution of this function
/// Quantile x_q of a probability distribution Function F is defined as
/// F(x_{q}) = \int_{xmin}^{x_{q}} f dx = q with 0 <= q <= 1.
/// For instance the median \f$ x_{\frac{1}{2}} \f$ of a distribution is defined as that value
/// of the random variable for which the distribution function equals 0.5:
/// F(x_{\frac{1}{2}}) = \prod(x < x_{\frac{1}{2}}) = \frac{1}{2}
/// code from Eddy Offermann, Renaissance
/// \param[in] this TF1 function
/// \param[in] nprobSum maximum size of array q and size of array probSum
/// \param[in] probSum array of positions where quantiles will be computed.
/// It is assumed to contain at least nprobSum values.
/// \param[out] return value nq (<=nprobSum) with the number of quantiles computed
/// \param[out] array q filled with nq quantiles
/// Getting quantiles from two histograms and storing results in a TGraph,
/// a so-called QQ-plot
/// TGraph *gr = new TGraph(nprob);
/// f1->GetQuantiles(nprob,gr->GetX());
/// f2->GetQuantiles(nprob,gr->GetY());
/// gr->Draw("alp");
virtual Double_t GetRandom(); /// Return a random number following this function shape
/// The distribution contained in the function fname (TF1) is integrated
/// over the channel contents.
/// It is normalized to 1.
/// For each bin the integral is approximated by a parabola.
/// The parabola coefficients are stored as non persistent data members
/// Getting one random number implies:
/// - Generating a random number between 0 and 1 (say r1)
/// - Look in which bin in the normalized integral r1 corresponds to
/// - Evaluate the parabolic curve in the selected bin to find the corresponding X value.
/// If the ratio fXmax/fXmin > fNpx the integral is tabulated in log scale in x
/// The parabolic approximation is very good as soon as the number of bins is greater than 50.
virtual Double_t GetRandom(Double_t xmin, Double_t xmax); /// Return a random number following this function shape in [xmin,xmax]
/// The distribution contained in the function fname (TF1) is integrated
/// over the channel contents.
/// It is normalized to 1.
/// For each bin the integral is approximated by a parabola.
/// The parabola coefficients are stored as non persistent data members
/// Getting one random number implies:
/// - Generating a random number between 0 and 1 (say r1)
/// - Look in which bin in the normalized integral r1 corresponds to
/// - Evaluate the parabolic curve in the selected bin to find
/// the corresponding X value.
/// The parabolic approximation is very good as soon as the number
/// of bins is greater than 50.
/// IMPORTANT NOTE
/// The integral of the function is computed at fNpx points. If the function
/// has sharp peaks, you should increase the number of points (SetNpx)
/// such that the peak is correctly tabulated at several points.
virtual void GetRange(Double_t &xmin, Double_t &xmax) const;/// Return range of a 1-D function.
virtual void GetRange(Double_t &xmin, Double_t &ymin, Double_t &xmax, Double_t &ymax) const;/// Return range of a 2-D function.
virtual void GetRange(Double_t &xmin, Double_t &ymin, Double_t &zmin, Double_t &xmax, Double_t &ymax, Double_t &zmax) const;/// Return range of function.
virtual Double_t GetSave(const Double_t *x);/// Get value corresponding to X in array of fSave values
virtual Double_t GetX(Double_t y, Double_t xmin=0, Double_t xmax=0, Double_t epsilon = 1.E-10, Int_t maxiter = 100, Bool_t logx = false) const; //由y找x
/// Returns the X value corresponding to the function value fy for (xmin<x<xmax).
/// in other words it can find the roots of the function when fy=0 and successive calls
/// by changing the next call to [xmin+eps,xmax] where xmin is the previous root.
/// First, the grid search is used to bracket the maximum
/// with the step size = (xmax-xmin)/fNpx. This way, the step size
/// can be controlled via the SetNpx() function. If the function is
/// unimodal or if its extrema are far apart, setting the fNpx to
/// a small value speeds the algorithm up many times.
/// Then, Brent's method is applied on the bracketed interval
/// epsilon (default = 1.E-10) controls the relative accuracy (if |x| > 1 )
/// and absolute (if |x| < 1) and maxiter (default = 100) controls the maximum number
/// of iteration of the Brent algorithm
/// If the flag logx is set the grid search is done in log step size
/// This is done automatically if the log scale is set in the current Pad
/// NOTE: see also TF1::GetMaximumX, TF1::GetMinimumX
virtual Double_t GetXmin() const {return fXmin;}
virtual Double_t GetXmax() const {return fXmax;}
TAxis *GetXaxis() const ;/// Get x axis of the function.
TAxis *GetYaxis() const ;/// Get y axis of the function.
TAxis *GetZaxis() const ;/// Get z axis of the function. (In case this object is a TF2 or TF3)
virtual Double_t GetVariable(const TString &name) { return (fFormula) ? fFormula->GetVariable(name) : 0;}
virtual Double_t GradientPar(Int_t ipar, const Double_t *x, Double_t eps=0.01);
/// Compute the gradient (derivative) wrt a parameter ipar
/// \param ipar index of parameter for which the derivative is computed
/// \param x point, where the derivative is computed
/// \param eps - if the errors of parameters have been computed, the step used in
/// numerical differentiation is eps*parameter_error.
/// if the errors have not been computed, step=eps is used
/// default value of eps = 0.01
/// Method is the same as in Derivative() function
/// If a parameter is fixed, the gradient on this parameter = 0
virtual void GradientPar(const Double_t *x, Double_t *grad, Double_t eps=0.01);
/// Compute the gradient wrt parameters
/// \param x point, were the gradient is computed
/// \param grad used to return the computed gradient, assumed to be of at least fNpar size
/// \param eps if the errors of parameters have been computed, the step used in
/// numerical differentiation is eps*parameter_error.
/// if the errors have not been computed, step=eps is used
/// default value of eps = 0.01
/// Method is the same as in Derivative() function
/// If a paramter is fixed, the gradient on this parameter = 0
virtual void InitArgs(const Double_t *x, const Double_t *params);/// Initialize parameters addresses.
static void InitStandardFunctions();/// Create the basic function objects
virtual Double_t Integral(Double_t a, Double_t b, Double_t epsrel=1.e-12);/// IntegralOneDim or analytical integral
virtual Double_t IntegralOneDim(Double_t a, Double_t b, Double_t epsrel, Double_t epsabs, Double_t &err);
/// Return Integral of function between a and b using the given parameter values and
/// relative and absolute tolerance.
/// The defult integrator defined in ROOT::Math::IntegratorOneDimOptions::DefaultIntegrator() is used
/// If ROOT contains the MathMore library the default integrator is set to be
/// the adaptive ROOT::Math::GSLIntegrator (based on QUADPACK) or otherwise the
/// ROOT::Math::GaussIntegrator is used
/// See the reference documentation of these classes for more information about the
/// integration algorithms
/// To change integration algorithm just do :
/// ROOT::Math::IntegratorOneDimOptions::SetDefaultIntegrator(IntegratorName);
/// Valid integrator names are:
/// - Gauss : for ROOT::Math::GaussIntegrator
/// - GaussLegendre : for ROOT::Math::GaussLegendreIntegrator
/// - Adaptive : for ROOT::Math::GSLIntegrator adaptive method (QAG)
/// - AdaptiveSingular : for ROOT::Math::GSLIntegrator adaptive singular method (QAGS)
/// - NonAdaptive : for ROOT::Math::GSLIntegrator non adaptive (QNG)
///
/// In order to use the GSL integrators one needs to have the MathMore library installed
/// Note 1:
/// Values of the function f(x) at the interval end-points A and B are not
/// required. The subprogram may therefore be used when these values are
/// undefined.
/// Note 2:
/// Instead of TF1::Integral, you may want to use the combination of
/// TF1::CalcGaussLegendreSamplingPoints and TF1::IntegralFast.
virtual Double_t IntegralError(Double_t a, Double_t b, const Double_t *params=0, const Double_t *covmat=0, Double_t epsilon=1.E-2);
/// Return Error on Integral of a parameteric function between a and b
/// due to the parameter uncertainties.
/// A pointer to a vector of parameter values and to the elements of the covariance matrix (covmat)
/// can be optionally passed. By default (i.e. when a zero pointer is passed) the current stored
/// parameter values are used to estimate the integral error together with the covariance matrix
/// from the last fit (retrieved from the global fitter instance)
/// IMPORTANT NOTE1:
/// When no covariance matrix is passed and in the meantime a fit is done
/// using another function, the routine will signal an error and it will return zero only
/// when the number of fit parameter is different than the values stored in TF1 (TF1::GetNpar() ).
/// In the case that npar is the same, an incorrect result is returned.
/// IMPORTANT NOTE2:
/// The user must pass a pointer to the elements of the full covariance matrix
/// dimensioned with the right size (npar*npar), where npar is the total number of parameters (TF1::GetNpar()),
/// including also the fixed parameters. When there are fixed parameters, the pointer returned from
/// TVirtualFitter::GetCovarianceMatrix() cannot be used.
/// One should use the TFitResult class, as shown in the example below.
/// To get the matrix and values from an old fit do for example:
/// TFitResultPtr r = histo->Fit(func, "S");
/// ..... after performing other fits on the same function do
/// func->IntegralError(x1,x2,r->GetParams(), r->GetCovarianceMatrix()->GetMatrixArray() );
virtual Double_t IntegralError(Int_t n, const Double_t * a, const Double_t * b, const Double_t *params=0, const Double_t *covmat=0, Double_t epsilon=1.E-2);
/// Return Error on Integral of a parameteric function with dimension larger tan one
/// between a[] and b[] due to the parameters uncertainties.
/// For a TF1 with dimension larger than 1 (for example a TF2 or TF3)
/// TF1::IntegralMultiple is used for the integral calculation
/// A pointer to a vector of parameter values and to the elements of the covariance matrix (covmat) can be optionally passed.
/// By default (i.e. when a zero pointer is passed) the current stored parameter values are used to estimate the integral error
/// together with the covariance matrix from the last fit (retrieved from the global fitter instance).
/// IMPORTANT NOTE1:
/// When no covariance matrix is passed and in the meantime a fit is done
/// using another function, the routine will signal an error and it will return zero only
/// when the number of fit parameter is different than the values stored in TF1 (TF1::GetNpar() ).
/// In the case that npar is the same, an incorrect result is returned.
/// IMPORTANT NOTE2:
/// The user must pass a pointer to the elements of the full covariance matrix
/// dimensioned with the right size (npar*npar), where npar is the total number of parameters (TF1::GetNpar()),
/// including also the fixed parameters. When there are fixed parameters, the pointer returned from
/// TVirtualFitter::GetCovarianceMatrix() cannot be used.
/// One should use the TFitResult class, as shown in the example below.
/// To get the matrix and values from an old fit do for example:
/// TFitResultPtr r = histo->Fit(func, "S");
/// ..... after performing other fits on the same function do
/// func->IntegralError(x1,x2,r->GetParams(), r->GetCovarianceMatrix()->GetMatrixArray() );
// virtual Double_t IntegralFast(const TGraph *g, Double_t a, Double_t b, Double_t *params=0);
virtual Double_t IntegralFast(Int_t num, Double_t *x, Double_t *w, Double_t a, Double_t b, Double_t *params=0, Double_t epsilon=1e-12);/// Gauss-Legendre integral, see CalcGaussLegendreSamplingPoints
virtual Double_t IntegralMultiple(Int_t n, const Double_t *a, const Double_t *b, Int_t maxpts, Double_t epsrel, Double_t epsabs ,Double_t &relerr,Int_t &nfnevl, Int_t &ifail);
/// This function computes, to an attempted specified accuracy, the value of
/// the integral
/// Input parameters:
/// \param[in] n Number of dimensions [2,15]
/// \param[in] a,b One-dimensional arrays of length >= N . On entry A[i], and B[i],
/// contain the lower and upper limits of integration, respectively.
/// \param[in] maxpts Maximum number of function evaluations to be allowed.
/// maxpts >= 2^n +2*n*(n+1) +1
/// if maxpts<minpts, maxpts is set to 10*minpts
/// \param[in] epsrel Specified relative accuracy.
/// \param[in] epsabs Specified absolute accuracy.
/// The integration algorithm will attempt to reach either the relative or the absolute accuracy.
/// In case the maximum funcion called is reached the algorithm will stop earlier without having reached
/// the desired accuracy
/// \param[out] relerr Contains, on exit, an estimation of the relative accuracy of the result.
/// \param[out] nfnevl number of function evaluations performed.
/// \param[out] ifail
/// \parblock
/// 0 Normal exit. At least minpts and at most maxpts calls to the function were performed.
/// 1 maxpts is too small for the specified accuracy eps. The result and relerr contain the values obtainable for the
/// specified value of maxpts.
/// 3 n<2 or n>15
/// \endparblock
/// Method:
/// The defult method used is the Genz-Mallik adaptive multidimensional algorithm
/// using the class ROOT::Math::AdaptiveIntegratorMultiDim (see the reference documentation of the class)
/// Other methods can be used by setting ROOT::Math::IntegratorMultiDimOptions::SetDefaultIntegrator()
/// to different integrators.
/// Other possible integrators are MC integrators based on the ROOT::Math::GSLMCIntegrator class
/// Possible methods are : Vegas, Miser or Plain
/// IN case of MC integration the accuracy is determined by the number of function calls, one should be
/// careful not to use a too large value of maxpts
virtual Double_t IntegralMultiple(Int_t n, const Double_t *a, const Double_t *b, Int_t /*minpts*/, Int_t maxpts, Double_t epsrel, Double_t &relerr,Int_t &nfnevl, Int_t &ifail) {
return IntegralMultiple(n,a,b,maxpts, epsrel, epsrel, relerr, nfnevl, ifail);
}
virtual Double_t IntegralMultiple(Int_t n, const Double_t *a, const Double_t *b, Double_t epsrel, Double_t &relerr);
/// See more general prototype below.
/// This interface kept for back compatibility
/// It is reccomended to use the other interface where one can specify also epsabs and the maximum number of points
virtual Bool_t IsEvalNormalized() const { return fNormalized; }
/// return kTRUE if the point is inside the function range
virtual Bool_t IsInside(const Double_t *x) const { return !( ( x[0] < fXmin) || ( x[0] > fXmax ) ); }
virtual Bool_t IsLinear() const { return (fFormula) ? fFormula->IsLinear() : false;}
virtual Bool_t IsValid() const;/// Return kTRUE if the function is valid
virtual void Print(Option_t *option="") const;
virtual void Paint(Option_t *option="");
/// Paint this function with its current attributes.
/// The function is going to be converted in an histogram and the corresponding
/// histogram is painted.
/// The painted histogram can be retrieved calling afterwards the method TF1::GetHistogram()
virtual void ReleaseParameter(Int_t ipar);
/// Release parameter number ipar If used in a fit, the parameter
/// can vary freely. The parameter limits are reset to 0,0.
virtual void Save(Double_t xmin, Double_t xmax, Double_t ymin, Double_t ymax, Double_t zmin, Double_t zmax);/// Save values of function in array fSave
virtual void SavePrimitive(std::ostream &out, Option_t *option = "");/// Save primitive as a C++ statement(s) on output stream out
virtual void SetChisquare(Double_t chi2) {fChisquare = chi2;}
virtual void SetFitResult(const ROOT::Fit::FitResult & result, const Int_t * indpar = 0);
/// Set the result from the fit
/// parameter values, errors, chi2, etc...
/// Optionally a pointer to a vector (with size fNpar) of the parameter indices in the FitResult can be passed
/// This is useful in the case of a combined fit with different functions, and the FitResult contains the global result
/// By default it is assume that indpar = {0,1,2,....,fNpar-1}.
template <class PtrObj, typename MemFn>
void SetFunction( PtrObj& p, MemFn memFn );
template <typename Func>
void SetFunction( Func f );
virtual void SetMaximum(Double_t maximum=-1111); // *MENU*
/// Set the maximum value along Y for this function
/// In case the function is already drawn, set also the maximum in the helper histogram
virtual void SetMinimum(Double_t minimum=-1111); // *MENU*
/// Set the minimum value along Y for this function
/// In case the function is already drawn, set also the minimum in the helper histogram
virtual void SetNDF(Int_t ndf);
/// Set the number of degrees of freedom
/// ndf should be the number of points used in a fit - the number of free parameters
virtual void SetNumberFitPoints(Int_t npfits) {fNpfits = npfits;}
virtual void SetNormalized(Bool_t flag) { fNormalized = flag; Update(); }
virtual void SetNpx(Int_t npx=100); // *MENU* 如果取点太少(也就是bin太大),图上显示的就是折线图连成的曲线,效果不好。为了曲线光滑,需要将区间分成尽量多的份数。
/// Set the number of points used to draw the function
/// The default number of points along x is 100 for 1-d functions and 30 for 2-d/3-d functions
/// You can increase this value to get a better resolution when drawing
/// pictures with sharp peaks or to get a better result when using TF1::GetRandom
/// the minimum number of points is 4, the maximum is 10000000 for 1-d and 10000 for 2-d/3-d functions
virtual void SetParameter(Int_t param, Double_t value) {
(fFormula) ? fFormula->SetParameter(param,value) : fParams->SetParameter(param,value);
Update();
}
virtual void SetParameter(const TString &name, Double_t value) {
(fFormula) ? fFormula->SetParameter(name,value) : fParams->SetParameter(name,value);
Update();
}
virtual void SetParameters(const Double_t *params) {
(fFormula) ? fFormula->SetParameters(params) : fParams->SetParameters(params);
Update();
}
virtual void SetParameters(Double_t p0,Double_t p1,Double_t p2=0,Double_t p3=0,Double_t p4=0,
Double_t p5=0,Double_t p6=0,Double_t p7=0,Double_t p8=0,
Double_t p9=0,Double_t p10=0) {
if (fFormula) fFormula->SetParameters(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10);
else fParams->SetParameters(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10);
Update();
} // *MENU* /// Set parameter values
virtual void SetParName(Int_t ipar, const char *name);/// Set name of parameter number ipar
virtual void SetParNames(const char *name0="p0",const char *name1="p1",const char *name2="p2",
const char *name3="p3",const char *name4="p4", const char *name5="p5",
const char *name6="p6",const char *name7="p7",const char *name8="p8",
const char *name9="p9",const char *name10="p10"); // *MENU* /// Set parameter names
virtual void SetParError(Int_t ipar, Double_t error);/// Set error for parameter number ipar
virtual void SetParErrors(const Double_t *errors);
/// Set errors for all active parameters
/// when calling this function, the array errors must have at least fNpar values
virtual void SetParLimits(Int_t ipar, Double_t parmin, Double_t parmax);
/// Set limits for parameter ipar.
/// The specified limits will be used in a fit operation
/// when the option "B" is specified (Bounds).
/// To fix a parameter, use TF1::FixParameter
virtual void SetParent(TObject *p=0) {fParent = p;}
virtual void SetRange(Double_t xmin, Double_t xmax); // *MENU*
/// Initialize the upper and lower bounds to draw the function.
/// The function range is also used in an histogram fit operation
/// when the option "R" is specified.
virtual void SetRange(Double_t xmin, Double_t ymin, Double_t xmax, Double_t ymax);
virtual void SetRange(Double_t xmin, Double_t ymin, Double_t zmin, Double_t xmax, Double_t ymax, Double_t zmax);
virtual void SetSavedPoint(Int_t point, Double_t value);/// Restore value of function saved at point
virtual void SetTitle(const char *title=""); // *MENU*
/// Set function title
/// if title has the form "fffffff;xxxx;yyyy", it is assumed that
/// the function title is "fffffff" and "xxxx" and "yyyy" are the
/// titles for the X and Y axis respectively.
virtual void Update();
/// Called by functions such as SetRange, SetNpx, SetParameters
/// to force the deletion of the associated histogram or Integral
static TF1 *GetCurrent();/// Static function returning the current function being processed
static void AbsValue(Bool_t reject=kTRUE);
/// Static function: set the fgAbsValue flag.
/// By default TF1::Integral uses the original function value to compute the integral
/// However, TF1::Moment, CentralMoment require to compute the integral
/// using the absolute value of the function.
static void RejectPoint(Bool_t reject=kTRUE);
/// Static function to set the global flag to reject points
/// the fgRejectPoint global flag is tested by all fit functions
/// if TRUE the point is not included in the fit.
/// This flag can be set by a user in a fitting function.
/// The fgRejectPoint flag is reset by the TH1 and TGraph fitting functions.
static Bool_t RejectedPoint();/// See TF1::RejectPoint above
static void SetCurrent(TF1 *f1);
/// Static function setting the current function.
/// the current function may be accessed in static C-like functions
/// when fitting or painting a function.
//Moments
virtual Double_t Moment(Double_t n, Double_t a, Double_t b, const Double_t *params=0, Double_t epsilon=0.000001);
/// Return nth moment of function between a and b
/// See TF1::Integral() for parameter definitions
virtual Double_t CentralMoment(Double_t n, Double_t a, Double_t b, const Double_t *params=0, Double_t epsilon=0.000001);
/// Return nth central moment of function between a and b
/// (i.e the n-th moment around the mean value)
/// See TF1::Integral() for parameter definitions
/// Author: Gene Van Buren <[email protected]>
virtual Double_t Mean(Double_t a, Double_t b, const Double_t *params=0, Double_t epsilon=0.000001) {return Moment(1,a,b,params,epsilon);}
virtual Double_t Variance(Double_t a, Double_t b, const Double_t *params=0, Double_t epsilon=0.000001) {return CentralMoment(2,a,b,params,epsilon);}
//some useful static utility functions to compute sampling points for Integral
//static void CalcGaussLegendreSamplingPoints(TGraph *g, Double_t eps=3.0e-11);
//static TGraph *CalcGaussLegendreSamplingPoints(Int_t num=21, Double_t eps=3.0e-11);
static void CalcGaussLegendreSamplingPoints(Int_t num, Double_t *x, Double_t *w, Double_t eps=3.0e-11);
/// Type: unsafe but fast interface filling the arrays x and w (static method)
/// Given the number of sampling points this routine fills the arrays x and w
/// of length num, containing the abscissa and weight of the Gauss-Legendre
/// n-point quadrature formula.
/// Gauss-Legendre:
/// W(x)=1 -1<x<1
/// (j+1)P_{j+1} = (2j+1)xP_j-jP_{j-1}
/// num is the number of sampling points (>0)
/// x and w are arrays of size num
/// eps is the relative precision
/// If num<=0 or eps<=0 no action is done.
/// Reference: Numerical Recipes in C, Second Edition
一维直方图拟合参数选项:
TFitResultPtr TH1::Fit(const char *fname ,Option_t *option ,Option_t *goption, Double_t xxmin, Double_t xxmax);
TFitResultPtr TH1::Fit(TF1 *f1 ,Option_t *option ,Option_t *goption, Double_t xxmin, Double_t xxmax);
// The list of fit options is given in parameter option.
// option = "W" Set all weights to 1 for non empty bins; ignore error bars
// = "WW" Set all weights to 1 including empty bins; ignore error bars
// = "I" Use integral of function in bin, normalized by the bin volume,
// instead of value at bin center
// = "L" Use Loglikelihood method (default is chisquare method)
// = "WL" Use Loglikelihood method and bin contents are not integer,
// i.e. histogram is weighted (must have Sumw2() set)
// = "U" Use a User specified fitting algorithm (via SetFCN)
// = "Q" Quiet mode (minimum printing)
// = "V" Verbose mode (default is between Q and V)
// = "E" Perform better Errors estimation using Minos technique
// = "B" User defined parameter settings are used for predefined functions
// like "gaus", "expo", "poln", "landau".
// Use this option when you want to fix one or more parameters for these functions.
// = "M" More. Improve fit results.
// It uses the IMPROVE command of TMinuit (see TMinuit::mnimpr).
// This algorithm attempts to improve the found local minimum by searching for a
// better one.
// = "R" Use the Range specified in the function range
// = "N" Do not store the graphics function, do not draw
// = "0" Do not plot the result of the fit. By default the fitted function
// is drawn unless the option"N" above is specified.
// = "+" Add this new fitted function to the list of fitted functions
// (by default, any previous function is deleted)
// = "C" In case of linear fitting, don't calculate the chisquare
// (saves time)
// = "F" If fitting a polN, switch to minuit fitter
// = "S" The result of the fit is returned in the TFitResultPtr
// (see below Access to the Fit Result)
//
// When the fit is drawn (by default), the parameter goption may be used
// to specify a list of graphics options. See TH1::Draw for a complete
// list of these options.
//
// In order to use the Range option, one must first create a function
// with the expression to be fitted. For example, if your histogram
// has a defined range between -4 and 4 and you want to fit a gaussian
// only in the interval 1 to 3, you can do:
// TF1 *f1 = new TF1("f1", "gaus", 1, 3);
// histo->Fit("f1", "R");
//
// Setting initial conditions
// ==========================
// Parameters must be initialized before invoking the Fit function.
// The setting of the parameter initial values is automatic for the
// predefined functions : poln, expo, gaus, landau. One can however disable
// this automatic computation by specifying the option "B".
// Note that if a predefined function is defined with an argument,
// eg, gaus(0), expo(1), you must specify the initial values for
// the parameters.
// You can specify boundary limits for some or all parameters via
// f1->SetParLimits(p_number, parmin, parmax);
// if parmin>=parmax, the parameter is fixed
// Note that you are not forced to fix the limits for all parameters.
// For example, if you fit a function with 6 parameters, you can do:
// func->SetParameters(0, 3.1, 1.e-6, -8, 0, 100);
// func->SetParLimits(3, -10, -4);
// func->FixParameter(4, 0);
// func->SetParLimits(5, 1, 1);
// With this setup, parameters 0->2 can vary freely
// Parameter 3 has boundaries [-10,-4] with initial value -8
// Parameter 4 is fixed to 0
// Parameter 5 is fixed to 100.
// When the lower limit and upper limit are equal, the parameter is fixed.
// However to fix a parameter to 0, one must call the FixParameter function.
//
// Note that option "I" gives better results but is slower.
//
//
// Changing the fitting objective function
// =======================================
// By default a chi square function is used for fitting. When option "L" (or "LL") is used
// a Poisson likelihood function (see note below) is used.
// The functions are defined in the header Fit/Chi2Func.h or Fit/PoissonLikelihoodFCN and they
// are implemented using the routines FitUtil::EvaluateChi2 or FitUtil::EvaluatePoissonLogL in
// the file math/mathcore/src/FitUtil.cxx.
// To specify a User defined fitting function, specify option "U" and
// call the following functions:
// TVirtualFitter::Fitter(myhist)->SetFCN(MyFittingFunction)
// where MyFittingFunction is of type:
// extern void MyFittingFunction(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag);
//
// Chi2 Fits
// =========
// By default a chi2 (least-square) fit is performed on the histogram. The so-called modified least-square method
// is used where the residual for each bin is computed using as error the observed value (the bin error)
//
// Chi2 = Sum{ ( y(i) - f (x(i) | p )/ e(i) )^2 }
//
// where y(i) is the bin content for each bin i, x(i) is the bin center and e(i) is the bin error (sqrt(y(i) for
// an un-weighted histogram. Bins with zero errors are excluded from the fit. See also later the note on the treatment of empty bins.
// When using option "I" the residual is computed not using the function value at the bin center, f (x(i) | p), but the integral
// of the function in the bin, Integral{ f(x|p)dx } divided by the bin volume
//
// Likelihood Fits
// ===============
// When using option "L" a likelihood fit is used instead of the default chi2 square fit.
// The likelihood is built assuming a Poisson probability density function for each bin.
// The negative log-likelihood to be minimized is
// NLL = Sum{ log Poisson( y(i) |{ f(x(i) | p ) ) }
// The exact likelihood used is the Poisson likelihood described in this paper:
// S. Baker and R. D. Cousins, “Clarification of the use of chi-square and likelihood functions in fits to histograms,”
// Nucl. Instrum. Meth. 221 (1984) 437.
// This method can then be used only when the bin content represents counts (i.e. errors are sqrt(N) ).
// The likelihood method has the advantage of treating correctly bins with low statistics. In case of high
// statistics/bin the distribution of the bin content becomes a normal distribution and the likelihood and chi2 fit
// give the same result.
// The likelihood method, although a bit slower, it is therefore the recommended method in case of low
// bin statistics, where the chi2 method may give incorrect results, in particular when there are
// several empty bins (see also below).
// In case of a weighted histogram, it is possible to perform a likelihood fit by using the
// option "WL". Note a weighted histogram is an histogram which has been filled with weights and it
// contains the sum of the weight square ( TH1::Sumw2() has been called). The bin error for a weighted
// histogram is the square root of the sum of the weight square.
//
// Treatment of Empty Bins
// =======================
//
// Empty bins, which have the content equal to zero AND error equal to zero,
// are excluded by default from the chisquare fit, but they are considered in the likelihood fit.
// since they affect the likelihood if the function value in these bins is not negligible.
// When using option "WW" these bins will be considered in the chi2 fit with an error of 1.
// Note that if the histogram is having bins with zero content and non zero-errors they are considered as
// any other bins in the fit. Instead bins with zero error and non-zero content are excluded in the chi2 fit.
// A likelihood fit should also not be peformed on such an histogram, since we are assuming a wrong pdf for each bin.
// In general, one should not fit an histogram with non-empty bins and zero errors, apart if all the bins have zero errors.
// In this case one could use the option "w", which gives a weight=1 for each bin (unweighted least-square fit).
//
// Fitting a histogram of dimension N with a function of dimension N-1
// ===================================================================
// It is possible to fit a TH2 with a TF1 or a TH3 with a TF2.
// In this case the option "Integral" is not allowed and each cell has
// equal weight.
//
// Associated functions
// ====================
// One or more object (typically a TF1*) can be added to the list
// of functions (fFunctions) associated to each histogram.
// When TH1::Fit is invoked, the fitted function is added to this list.
// Given an histogram h, one can retrieve an associated function
// with: TF1 *myfunc = h->GetFunction("myfunc");
//
// Access to the fit result
// ========================
// The function returns a TFitResultPtr which can hold a pointer to a TFitResult object.
// By default the TFitResultPtr contains only the status of the fit which is return by an
// automatic conversion of the TFitResultPtr to an integer. One can write in this case directly:
// Int_t fitStatus = h->Fit(myFunc)
//
// If the option "S" is instead used, TFitResultPtr contains the TFitResult and behaves as a smart
// pointer to it. For example one can do:
// TFitResultPtr r = h->Fit(myFunc,"S");
// TMatrixDSym cov = r->GetCovarianceMatrix(); // to access the covariance matrix
// Double_t chi2 = r->Chi2(); // to retrieve the fit chi2
// Double_t par0 = r->Parameter(0); // retrieve the value for the parameter 0
// Double_t err0 = r->ParError(0); // retrieve the error for the parameter 0
// r->Print("V"); // print full information of fit including covariance matrix
// r->Write(); // store the result in a file
//
// The fit parameters, error and chi2 (but not covariance matrix) can be retrieved also
// from the fitted function.
// If the histogram is made persistent, the list of
// associated functions is also persistent. Given a pointer (see above)
// to an associated function myfunc, one can retrieve the function/fit
// parameters with calls such as:
// Double_t chi2 = myfunc->GetChisquare();
// Double_t par0 = myfunc->GetParameter(0); //value of 1st parameter
// Double_t err0 = myfunc->GetParError(0); //error on first parameter
//
// Access to the fit status
// ========================
// The status of the fit can be obtained converting the TFitResultPtr to an integer
// independently if the fit option "S" is used or not:
// TFitResultPtr r = h->Fit(myFunc,opt);
// Int_t fitStatus = r;
//
// The fitStatus is 0 if the fit is OK (i.e no error occurred).
// The value of the fit status code is negative in case of an error not connected with the
// minimization procedure, for example when a wrong function is used.
// Otherwise the return value is the one returned from the minimization procedure.
// When TMinuit (default case) or Minuit2 are used as minimizer the status returned is :
// fitStatus = migradResult + 10*minosResult + 100*hesseResult + 1000*improveResult.
// TMinuit will return 0 (for migrad, minos, hesse or improve) in case of success and 4 in
// case of error (see the documentation of TMinuit::mnexcm). So for example, for an error
// only in Minos but not in Migrad a fitStatus of 40 will be returned.
// Minuit2 will return also 0 in case of success and different values in migrad minos or
// hesse depending on the error. See in this case the documentation of
// Minuit2Minimizer::Minimize for the migradResult, Minuit2Minimizer::GetMinosError for the
// minosResult and Minuit2Minimizer::Hesse for the hesseResult.
// If other minimizers are used see their specific documentation for the status code returned.
// For example in the case of Fumili, for the status returned see TFumili::Minimize.
//
// Excluding points
// ================
// Use TF1::RejectPoint inside your fitting function to exclude points
// within a certain range from the fit. Example:
// Double_t fline(Double_t *x, Double_t *par)
// {
// if (x[0] > 2.5 && x[0] < 3.5) {
// TF1::RejectPoint();
// return 0;
// }
// return par[0] + par[1]*x[0];
// }
//
// void exclude() {
// TF1 *f1 = new TF1("f1", "[0] +[1]*x +gaus(2)", 0, 5);
// f1->SetParameters(6, -1,5, 3, 0.2);
// TH1F *h = new TH1F("h", "background + signal", 100, 0, 5);
// h->FillRandom("f1", 2000);
// TF1 *fline = new TF1("fline", fline, 0, 5, 2);
// fline->SetParameters(2, -1);
// h->Fit("fline", "l");
// }
//
// Warning when using the option "0"
// =================================
// When selecting the option "0", the fitted function is added to
// the list of functions of the histogram, but it is not drawn.
// You can undo what you disabled in the following way:
// h.Fit("myFunction", "0"); // fit, store function but do not draw
// h.Draw(); function is not drawn
// const Int_t kNotDraw = 1<<9;
// h.GetFunction("myFunction")->ResetBit(kNotDraw);
// h.Draw(); // function is visible again
//
// Access to the Minimizer information during fitting
// ==================================================
// This function calls, the ROOT::Fit::FitObject function implemented in HFitImpl.cxx
// which uses the ROOT::Fit::Fitter class. The Fitter class creates the objective fuction
// (e.g. chi2 or likelihood) and uses an implementation of the Minimizer interface for minimizing
// the function.
// The default minimizer is Minuit (class TMinuitMinimizer which calls TMinuit).
// The default can be set in the resource file in etc/system.rootrc. For example
// Root.Fitter: Minuit2
// A different fitter can also be set via ROOT::Math::MinimizerOptions::SetDefaultMinimizer
// (or TVirtualFitter::SetDefaultFitter).
// For example ROOT::Math::MinimizerOptions::SetDefaultMinimizer("GSLMultiMin","BFGS");
// will set the usdage of the BFGS algorithm of the GSL multi-dimensional minimization
// (implemented in libMathMore). ROOT::Math::MinimizerOptions can be used also to set other
// default options, like maximum number of function calls, minimization tolerance or print
// level. See the documentation of this class.
//
// For fitting linear functions (containing the "++" sign" and polN functions,
// the linear fitter is automatically initialized.
code
TF1 *f1=new TF1("aaaaa","f(x)",min,max);
TF2 *f2=new TF2("aaaaa","f(x,y)",x min,x max,y min,y max);
// inline expression using standard C++ functions/operators
// inline expression using a ROOT function (e.g. from TMath) without parameters
TF1 *fa1 = new TF1("fa1","sin(x)/x",0,10);
fa1->Draw();
TF1 *fa2 = new TF1("fa2","TMath::DiLog(x)",0,10);
fa2->Draw();
// inline expression using a user defined CLING function by name
Double_t myFunc(x) { return x+sin(x); }
// ....
TF1 *fa3 = new TF1("fa3","myFunc(x)",-3,5);
fa3->Draw();
TF1 *fa = new TF1("fa","[0]*x*sin([1]*x)",-3,3);
fa->SetParameter(0,value_first_parameter);
fa->SetParameter(1,value_second_parameter);
fa->SetParName(0,"Constant");// Parameters may be given a name:
TCanvas *c = new TCanvas("c","c",0,0,500,300);
TF1 *fb2 = new TF1("fa3","TMath::Landau(x,[0],[1],0)",-5,10);
fb2->SetParameters(0.2,1.3); fb2->Draw();
// A lambda expression with variables and parameters **(NEW)**
// TF1 now supports using lambda expressions in the formula. This allows, by using a full C++ syntax the full power of lambda functions and still mantain the capability of storing the function in a file which cannot be done with funciton pointer or lambda written not as expression, but as code (see items belows).
// Example on how using lambda to define a sum of two functions. Note that is necessary to provide the number of parameters
TF1 f1("f1","sin(x)",0,10);
TF1 f2("f2","cos(x)",0,10);
TF1 fsum("f1","[&](double *x, double *p){ return p[0]*f1(x) + p[1]*f2(x); }",0,10,2);
example
Double_t myfunction(Double_t *x, Double_t *par)
{
Float_t xx =x[0];
Double_t f = TMath::Abs(par[0]*sin(par[1]*xx)/xx);
return f;
}
void myfunc()
{
TF1 *f1 = new TF1("myfunc",myfunction,0,10,2);
f1->SetParameters(2,1);
f1->SetParNames("constant","coefficient");
f1->Draw();
}
void myfit()
{
TH1F *h1=new TH1F("h1","test",100,0,10);
h1->FillRandom("myfunc",20000);
TF1 *f1=gROOT->GetFunction("myfunc");
f1->SetParameters(800,1);
h1->Fit("myfunc");
}
void gint() {
TF1 *g = new TF1("g","gaus",-5,5);
g->SetParameters(1,0,1);
//default gaus integration method uses 6 points
//not suitable to integrate on a large domain
double r1 = g->Integral(0,5);
double r2 = g->Integral(0,1000);
//try with user directives computing more points
Int_t np = 1000;
double *x=new double[np];
double *w=new double[np];
g->CalcGaussLegendreSamplingPoints(np,x,w,1e-15);
double r3 = g->IntegralFast(np,x,w,0,5);
double r4 = g->IntegralFast(np,x,w,0,1000);
double r5 = g->IntegralFast(np,x,w,0,10000);
double r6 = g->IntegralFast(np,x,w,0,100000);
printf("g->Integral(0,5) = %g\n",r1);
printf("g->Integral(0,1000) = %g\n",r2);
printf("g->IntegralFast(n,x,w,0,5) = %g\n",r3);
printf("g->IntegralFast(n,x,w,0,1000) = %g\n",r4);
printf("g->IntegralFast(n,x,w,0,10000) = %g\n",r5);
printf("g->IntegralFast(n,x,w,0,100000)= %g\n",r6);
delete [] x;
delete [] w;
}
/// This example produces the following results:
///
/// g->Integral(0,5) = 1.25331
/// g->Integral(0,1000) = 1.25319
/// g->IntegralFast(n,x,w,0,5) = 1.25331
/// g->IntegralFast(n,x,w,0,1000) = 1.25331
/// g->IntegralFast(n,x,w,0,10000) = 1.25331
/// g->IntegralFast(n,x,w,0,100000)= 1.253
TH1D *histo = new TH1D("histo", "", 100, -4, 4);
histo->FillRandom("gaus");
histo->Fit("gaus");
TF1 *g = (TF1*)histo->GetListOfFunctions()->FindObject("gaus");
double c = g->GetParameter(0);
cout << c << endl;